Time-resolved resting-state brain networks.

نویسندگان

  • Andrew Zalesky
  • Alex Fornito
  • Luca Cocchi
  • Leonardo L Gollo
  • Michael Breakspear
چکیده

Neuronal dynamics display a complex spatiotemporal structure involving the precise, context-dependent coordination of activation patterns across a large number of spatially distributed regions. Functional magnetic resonance imaging (fMRI) has played a central role in demonstrating the nontrivial spatial and topological structure of these interactions, but thus far has been limited in its capacity to study their temporal evolution. Here, using high-resolution resting-state fMRI data obtained from the Human Connectome Project, we mapped time-resolved functional connectivity across the entire brain at a subsecond resolution with the aim of understanding how nonstationary fluctuations in pairwise interactions between regions relate to large-scale topological properties of the human brain. We report evidence for a consistent set of functional connections that show pronounced fluctuations in their strength over time. The most dynamic connections are intermodular, linking elements from topologically separable subsystems, and localize to known hubs of default mode and fronto-parietal systems. We found that spatially distributed regions spontaneously increased, for brief intervals, the efficiency with which they can transfer information, producing temporary, globally efficient network states. Our findings suggest that brain dynamics give rise to variations in complex network properties over time, possibly achieving a balance between efficient information-processing and metabolic expenditure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

Functional Covariance Networks: Obtaining Resting-State Networks from Intersubject Variability

In this study, we investigate a new approach for examining the separation of the brain into resting-state networks (RSNs) on a group level using resting-state parameters (amplitude of low-frequency fluctuation [ALFF], fractional ALFF [fALFF], the Hurst exponent, and signal standard deviation). Spatial independent component analysis is used to reveal covariance patterns of the relevant resting-s...

متن کامل

Brain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis

Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...

متن کامل

Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain.

During rest, multiple cortical brain regions are functionally linked forming resting-state networks. This high level of functional connectivity within resting-state networks suggests the existence of direct neuroanatomical connections between these functionally linked brain regions to facilitate the ongoing interregional neuronal communication. White matter tracts are the structural highways of...

متن کامل

Identification of Resting State Networks Using Whole-Brain CASL

Introduction: There is increasing interest in task-absent functional MRI for the identification of “resting-state networks” [1,2]. Previous studies using ASL techniques [3] to show resting state networks (RSNs) have been confined to a restricted field-of-view [4,5]. However, to our knowledge, ASL has not yet been used to study RSNs across the whole brain with single timeseries acquisitions. Thi...

متن کامل

Bursty and persistent properties of large-scale brain networks revealed with a point-based method for dynamic functional connectivity

In this paper, we present a novel and versatile method to study the dynamics of restingstate fMRI brain connectivity with a high temporal sensitivity. Whereas most existing methods often rely on dividing the time-series into larger segments of data (i.e. so called sliding window techniques), the point-based method (PBM) proposed here provides an estimate of brain connectivity at the level of in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 28  شماره 

صفحات  -

تاریخ انتشار 2014